

Crestal Approach - Sinus KIT

CAS-KIT / CAS-KIT Plus

No Fear of Membrane Perforation!

Crestal Approach - Sinus KIT

CAS-KIT/CAS-KIT Plus

(Crestal Approach - Sinus KIT)

Contents

- 1 Introduction
- 2 CAS-KIT Feature
- 3 CAS-Drill Specifications & Performance
- 4 Components
- 5 Clinical Indications & Case Study
- 6 Surgical Procedures
- **7** Others

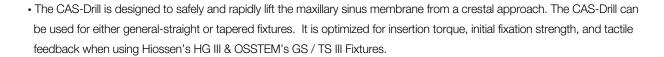
Introduction

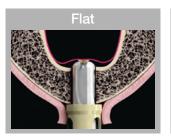
• Hiossen's Crestal Approach Sinus KIT (CAS-KIT) is specifically designed to easily and safely lift the membrane in the maxillary sinus from a crestal approach.

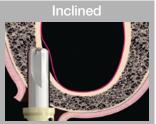
The key component of the CAS-KIT is the CAS-Drill. The unique design of the CAS-Drill enhances convenience and safety of maxillary sinus surgery by; safely lifting the membrane while drilling, precision cutting, flexible cutting speed from low to high speed (800rpm), formation of conical shaped bone chip, generation of bone particles, smooth & stable insertion, easy path correction and septum surgery.

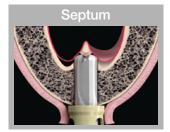
FEATURES of CAS-KIT

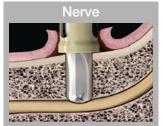
- Safely and rapidly lifts the sinus membrane while drilling
- Unique Stopper system that prevents over drilling into the sinus cavity
- Hydraulic Lift System that easily & safely lifts the membrane
- New Bone Carrier System for transferring & filling bone graft materials
- Simple and intuitive surgical system
- The ability to combine Osteotome in surgery



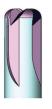



CAS-Drill SPECIFICATIONS & PERFORMANCE




The CAS-Drill:

- CAS Drill forms a conical bone barrier, protecting the membrane.
- The atraumatic design of the drill tip allows the user to perform sinus surgery even if the sinus floor is flat, inclined or septum & Inferior alveolar canal.



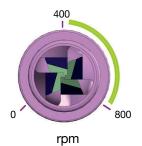
- It's design forms conical bone and bone chips.
- The CAS-Drill tip has an inverse conical shape. This shape will form a conical bone chip when drilling, which assists with safely lifting the membrane. In addition, bone particles generated when drilling discharge upwards, producing a Membrane Auto-Lift function.

Conical Bone + Bone Chip

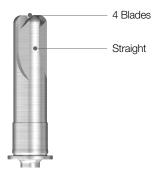
Bone particles formation between the cutting blades

Membrane Auto-Lift by Bone Chip

- Membrane can safely be lifted.



The CAS-Drill can:


- Drilling can be done at various speeds, from low to high speed (800rpm), allowing flexibility during surgery.

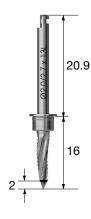
Guide : 400 ~ 800 rpm

However, 400 to 600rpm is recommended for first time users.

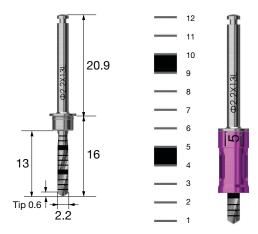
- The drill is designed with four blades which reduce deflecting off of the bone, and the straight sides dampen vibrations.

- Extraction of bone particles (at low speed of ~50rpm).

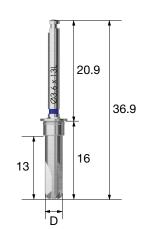
• Generally, the CAS-Drill can be used up to 50 times.


The number of uses may vary depending on the type of bone.

Components \angle


1) Ø 2.0 Guide Drill

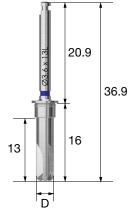
- Marking drill to mark fixture insertion location
 - Used to remove side wall of tooth extraction with its side blade formation
 - Marking on apex at 2mm


2) Ø 2.2 Twist Drill

- The drill tip is 0.6mm and is 13mm long.
- Recommended drill speed: 1000~1500 RPM Irrigation with saline solution
- 1mm spaced markers with wide bands at 4~5, 9~10
- Unique Stopper system
- It is recommended to stop drilling when there is about 2mm of bone left, please calculate this beforehand when using CT images or radiograph as a guide

3) CAS-Drill

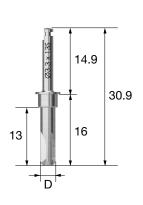
- Comes in six (6) diameters: Ø 2.8 / Ø 3.1 / Ø 3.3 / Ø 3.6 / Ø 3.8 / Ø 4.1
- Allows a 13mm Fixture to be implanted
- Drilling is dependent upon the Fixture diameter and the bone density
- Drilling speed ranges from low speed to high speed (800rpm) Experienced: 800rpm; Beginner: 400 to 600rpm is recommended Irrigation with saline solution

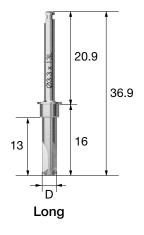

CAS-KIT (HCRSNK)

CAS-Drill

- When operating on maxillary sinus, forms conical bone lid and augments membrane safely
- Superior bone removing capability from low speed to high speed, harvesting autogenous bone on low speed
- Safely advance to the floor of sinus with stoppers (1mm increment)
- Final drill diameter selected according to fixture diameter and bone density, independently of straight or tapered fixture type

\ D Ø2.8 Ø3.1 Ø3.3 Ø3.6 Ø3.8 Ø4.1


SNDR2813TL SNDR3113TL SNDR3313TL SNDR3613TL SNDR3813TL SNDR4113TL



CAS-KIT Plus (HCRSNKP)

CAS-Drill

• CAS-KIT plus includes short CAS-Drills in the original CAS- KIT

L D	Ø2.8	Ø3.1	Ø3.3	Ø3.6	Ø3.8	Ø4.1
Short	SNDR2813TS	SNDR3113TS	SNDR3313TS	SNDR3613TS	SNDR3813TS	SNDR4113TS
Long	SNDR2813TL	SNDR3113TL	SNDR3313TL	SNDR3613TL	SNDR3813TL	SNDR4113TL

Components \angle

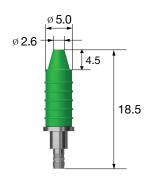
4) Stopper System

- A total of eleven (11) stoppers; labeled 2 to 12mm
 - Labels indicate the remaining length of the drill (from drill tip to stopper top)
 - Each stopper is anodized and color coded. Labels are laser marking

5) Depth Gauge

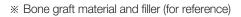
- Measures the thickness of the remaining bone
- The atraumatic tip can be used to confirm membrane lifting
- Can be used with the Stopper system
- Caution: Do not use the Depth Gauge to lift membrane beyond 1mm.

6) Hydraulic Lifter


- The Hydraulic Lifter uses normal saline to raise the membrane
- Infuse 1cc or 3cc with a syringe
- Required volume of saline solution

To expand 3mm of the membrane, generally 0.2 to 0.3cc of saline solution is injected. Inject saline solution very SLOWLY.

- Contraindication
- Not recommended for patients with inflammation of the maxillary Sinus (Sinusitis)
- Not recommended for patients with complex morphology of the sinus floor (including the septum)



CAS-KIT / CAS-KIT Plus

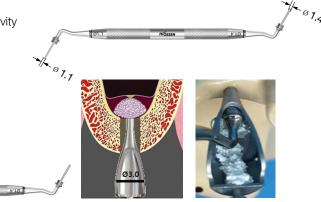
7) Bone Carrier

- Used to fill bone graft materials inside sinus cavity
- Fixes head part by tightening the back of body part
- Head(SNBCH30 or SNBCH35) can be replaced

Herry Y and Lee DY, 2005						
Volume of bone matrix						
0.36cc						
0.5cc						
0.7cc						
0.9cc						

8) Bone Carrier Head

- Used to fill bone graft materials inside sinus cavity
- SNBCH30: Use after drilling with CAS-drill Ø 3.1/Ø 3.3
- SNBCH35: Use after drilling with CAS-drill $\,^{\varnothing}$ 3.6/ $\,^{\varnothing}$ 3.8/ $\,^{\varnothing}$ 4.1
- Fill in bone material to the back of marking line on head part, separate gradually with bone condenser to fill inside of sinus completely, and repeat the procedure



9) Bone Condenser

- Tool to push in when filling bone materials inside sinus cavity
- SNBCH30: Uses Ø 1.1 / SNBCH35 : Uses Ø 1.4

Ø1.1/1.4 **D**

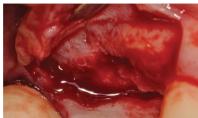
SNBC1114

Components

10) Hydraulic Membrane Lifter Tube

• Connect to hydraulic membrane lifter

SNMT



Clinical Indications & Case Study

1) Single molar missing case

Missing of right 1st molar

Data source: Apsun dental clinic. Dr. Y.S. Cho

Flap elevated

ø **2.2 twist drill** with 4.0 mm stopper

ø **3.6 CAS drill** with 8.0 mm stopper

Depth gauge with 9.0 mm stopper

Sinus floor was passed

Clinical Indications & Case Study

1) Single molar missing case

Hydraulic membrane lifter

Membrane safely elevation using the Hydraulic membrane lift system

New bone carrier and bone condenser

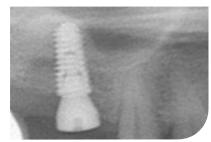
Q-Oss+ 0.25g

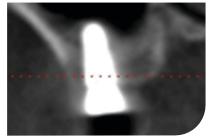
Bone grafting into the sinus

Finished bone grafting

TSIII SA Ø 4.5x10.0mm

Clinical Indications & Case Study


1) Single molar missing case


14Ncm, ISQ:66/66

 \emptyset 5.0 Healing abutment connection

POP Radiography

POP CT view

CAS-KIT / CAS-KIT Plus

Clinical Indications & Case Study

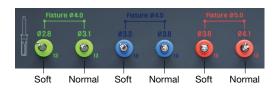
2) #26 Missing Case

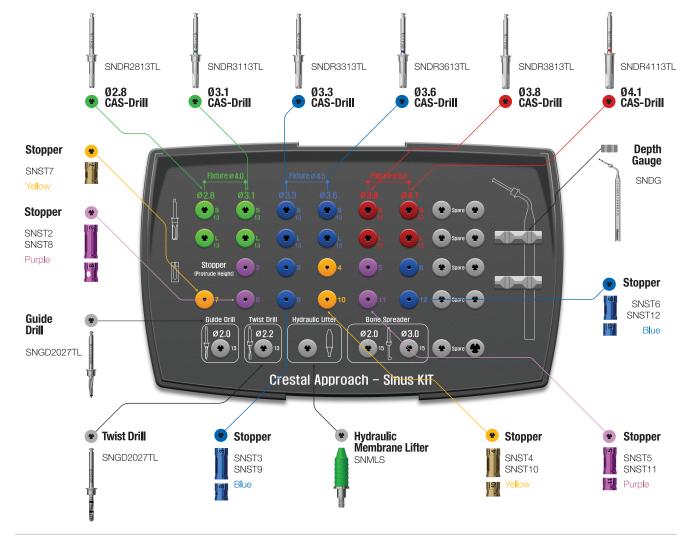
- USII Ø 4.0 x 11.5mm implant planning
- Initiated using a Ø 2.0 Twist Drill
- CAS-Drill at 800rpm
- Membrane lifted with 0.25cc of saline solution
- Bone Condenser 4~5mm lifting
- Bone Spreader at 10rpm
- Initial fixation force 36Ncm

3) #25 Hydraulic Lift Case

- TSIII Ø 4.5 x 10mm implant planning
- Initiated using a $\,$ $\,$ $\,$ 2.0 Twist Drill
- CAS-Drill at 800rpm
- Membrane lifted with 0.30cc of saline solution
- Bone Condenser: 4mm lifting
- Bone Spreader at 30rpm

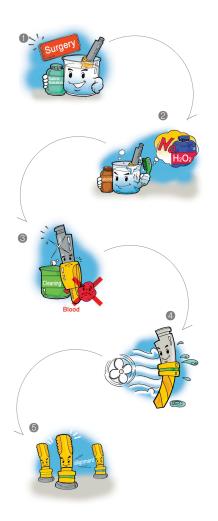
*Data source from: Dr. Jung, Gi-don; Bright Smile Dental Clinic





Surgical procedure

• The CAS-Drill design is optimized for Hiossen's HG III & OSSTEM's GS / TS III Fixtures. Use the matrix below to prepare for surgery. There are a few things that need to be taken into consideration; the diameter of the fixture, Bone density into the sinus floor, and the necessary force for a stable fixture. In the case of a general straight type fixture, use a CAS-Drill that is 1mm smaller in diameter than that of the fixture.



▶: Required ▶: Optional													
Implar	Implant Selection		Twist Drill	CAS-Drill					Depth gauge	Hydraulic Memb. Lifter	Bone carrie	Bone condesor	
F(ø)	Bone Density	ø 2.0/2.7	ø 2.2	ø 2.8	ø 3.1	ø 3.3	ø 3.6	ø 3.8	ø 4.1	gaage	Wichib. Enter	James	CONGCOOL
ø 4.0	Soft	•	•	•						•	•	•	•
ø 4.5		•	>	>		>				>	•	•	•
ø 5.0		•	>	>				>		>	•	•	•
ø 4.0	Normal	•	>		>					>	•	•	•
ø 4.5		•	•		•		•			>	•	•	•
ø 5.0		•	•		>				>	>	•	•	•

Instruction for Use

- ① Prepare tools for surgery by soaking them in a "saline solution" or in "distilled water."
- ② After surgery: All tools should be soaked in an "alcohol solution".
- Caution
- Avoid using Hydrogen Peroxide.
- Hydrogen Peroxide will discolor laser markings and anodized surfaces.
- Tools should be cleaned thoroughly with distilled or tap water to wash away any remaining blood and foreign material.
- Completely dry all tools using a dry cloth or warm air.
- ⑤ Dried tools should be stored in the KIT case.(Please refer to the color coding when placing the tools back in the case)
- \odot After placing all the tools back into the kit, dry the entire kit in an Autoclave (132° \circ for 15 minutes) and then store the kit at room temperature.

NOTES:

Immediately after surgery, all the tools should be cleaned and stored.

The CAS-KIT has a one year warranty on all parts & case.

The recommended usage of the drills is 50 times.